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Abstract—This paper studies the cache-aided multiple-input
single-output (MISO) broadcast problem with one-shot linear
delivery, where a server with L antennas and N files is con-
nected to K single-antenna users (each with a memory of M
files) through a wireless broadcast channel, with the objective
to maximize the sum Degree-of-Freedom (sum-DoF) in the
whole system. Recently, a construction structure, referred to
as Multiple-antenna Placement Delivery Array (MAPDA), was
proposed to construct coded caching schemes for this cache-
aided MISO broadcast problem based on the joint design of
coded caching and zero-forcing (ZF) precoding. In this paper, we
first propose an upper bound on the sum-DoF of any MAPDA
scheme given a fixed cache placement. Then, under a class of
cyclic placements which leads to subpacketizations on the files
linear with K, we propose two MAPDAs for the case L < KM/N
achieving the sum-DoF 2L, which is order optimal within a factor
of 2 when M/N ≤ 1/2 compared to the upper bound under the
cyclic placement.

I. INTRODUCTION AND PROBLEM DESCRIPTION

Coded caching originally proposed by Maddah-Ali and
Niesen (MN) in [1], enables the transmission of multicast
messages which can serve multiple users simultaneously by
leveraging the users’ cached content to remove interference,
such that the communication load/time could be significantly
reduced. In this paper, we consider the K-user cache-aided
MISO broadcast problem with one-shot linear delivery origi-
nally studied in [2], where an L-antenna transmitter communi-
cates to K cache-aided single-antenna users through a wireless
broadcast channel. The server is equipped with N ≥ K
files W1, . . . ,WN , where each file Wn has F packets and
each packet, denoted by Wn,f , contains B uniform and i.i.d.
bits where n ∈ {1, . . . , N} and f ∈ {1, . . . , F}. Each user
k ∈ {1, . . . ,K} has a cache Zk to store up to M files. The
broadcast channel is modelled as follows. At each time slot
of transmission, say t-th time slot, the server sends one signal
Xi(t) ∈ C through the ith antenna for each i ∈ {1, . . . , L},
under the power constraint E

[∑
1≤i≤L |Xi(t)|2

]
≤ P , where

P is assumed to be large enough (i.e., high SNR regime).
The received signal at this time slot by user k is Yk(t) =∑L
i=1 hk,iXi(t) + εk(t), where hk,i ∈ C denotes the channel

gain between antenna i and user k, which is assumed to remain
unchanged in the whole communication process and perfectly
known to the server and all users, and εk(t) ∼ CN (0, 1)
represents the noise.

A coded caching scenario has two phases. During the
placement phase, each user fills its cache without knowledge
of future demand. During the delivery phase, each user k ∈

{1, . . . ,K} requests one file Wdk , where dk ∈ {1, . . . , N}.
The server encodes each packet Wn,f into a coded packet
W̃n,f by using a code for the Gaussian channel with rate
B/B̃ = logP + o(logP ) (bit per complex symbol). Then the
transmission is divided into S blocks, each of which contains
B̃ time slots. In each block s ∈ {1, . . . , S}, the one-shot
transmission from the server is useful to rs users, each of
which can recover one desired coded packet. Since each coded
packet carries one DoF, the sum-DoF of the whole system is∑S
s=1 rs/S. The objective of this problem is to maximize the

worst-case sum-DoF among all possible demands.
For this cache-aided MISO broadcast problem with one-

shot linear delivery, the authors in [2]–[9] proposed achievable
caching schemes by combining coded caching and ZF. Under
the constraint of uncoded cache placement and one-shot linear
delivery, the maximum sum-DoF is L + KM

N [10]. For the
general case, the sum-DoF L + KM

N is achieved in [2],
[4], while suffering from extremely high subpacketzations
(which are even more than

(
K

KM/N

)(
K−KM/N−1

L−1
)
). Various

achievable caching schemes were proposed in [5]–[9] under
different system parameters constraints, which can reduce the
subpacketzation of the above schemes. For example, a coded
caching scheme which can achieve the sum-DoF L+KM

N with
a linear subpacketization in terms of K, was proposed in [6],
under the constraint that L ≥ KM/N .

Placement delivery array (PDA) originally proposed in [11],
is a combinatorial structure to construct coded caching
schemes with limited subpacketization for the shared-link
systems. Very recently, the authors in [12], [13] extended the
concept of PDA to the cache-aided MISO broadcast problem
with one-shot linear delivery, and introduced a novel com-
binatorial based on uncoded cache placement, referred to as
Multiple-antenna Placement Delivery Array (MAPDA), which
can represent the schemes in [2]–[9]. Based on the MAPDA
structure, some achievable schemes which can further reduce
the subpakcetization while achieving the optimal sum-DoF
L+ KM

N , were proposed in [12], [13]. More precisely, in [12]
an MAPDA design was proposed for the general case which
reduces the subpacketizations of those in [2], [4]. Another
MAPDA design was propsoed in [13] for the case L ≥
KM/N , with lower linear subpacketization than [6].

Our Contributions: In this paper, we first propose an
upper bound on the sum-DoF of any MAPDA given a fixed
placement strategy. We then introduce a placement class,
referred to as cyclic placement, where the packets of each



file is cached by the users cyclically. Based on the cyclic
placement, we propose two MAPDAs for the case where
L < KM/N , whose achieved sum-DoF is equal to 2L and
the needed subpacketizations are linear with K. Note that the
existing caching schemes with linear subpacketization for this
cache-aided MISO broadcast problem need the constraint that
L ≥ KM/N . Finally, we prove that the achieved sum-DoF
by the proposed MAPDA is order optimal within a factor
of 2 when M/N ≤ 1/2, under the constraint of the cyclic
placement.

Notations: We let [a : b] = {a, a + 1, · · · , b} and [a] =
{1, 2, · · · , a}; the sum of a scalar and a vector represents the
vector obtained by incrementing each element of the vector by
the scalar; < · >a represents the modulo operation with integer
quotient a > 0 and in this paper we let < · >a∈ {1, . . . , a}
(i.e., we let < b >a= a if a divides b); if · is a vector, < · >a
represents the vector obtained by taking the modulo operation
with integer quotient a on each element of this vector.

II. MULTIPLE-ANTENNA PLACEMENT DELIVERY ARRAY

We review the definition of MAPDA proposed in [12]. Note
that we consider the case where L ≥ 2, since the case where
L = 1 reduces to the MN shared-link coded caching problem.

Definition 1 ( [12]). For any positive integers L, K, F , Z
and S, an F ×K array P = (pf,k)f∈[F ],k∈[K] composed of
“ ∗ ” and [S], is called (L,K,F, Z, S) MAPDA, if it satisfies
the following conditions

C1. The symbol “ ∗ ” appears Z times in each column;
C2. Each integer s ∈ [S] appears at least once in the array;
C3. Each integer s ∈ [S] appears at most once in each

column;
C4. For any integer s ∈ [S], define P(s) as the subarray of

P composed of the rows and columns containing s, and
r′s × rs as the dimension of P(s) = (p

(s)
f,k)f∈[r′s],k∈[rs].

The number of non-star entries in each row of P(s) is
less than or equal to L, i.e.,∣∣∣{k ∈ [rs]| p(s)f,k ∈ [S]}

∣∣∣ ≤ L, ∀f ∈ [r′s]. (1)

If each integer appears g times in the P, then P is
regular, denoted by g-(L,K,F, Z, S) MAPDA. For instance,
the following array is a 4-(3, 4, 4, 1, 3) MAPDA,

P =


∗ 1 2 3
1 ∗ 3 2
2 3 ∗ 1
3 2 1 ∗

 .

It was shown in [12, Theorem 1] that given an MAPDA
P, we can obtain a coded caching scheme for the cache-aided
MISO broadcast problem.

Theorem 1 ( [12]). For a given (L,K,F, Z, S) MAPDA, there
exists an F -division scheme for the (L,K,M,N) cache-aided
MISO broadcast problem with memory ratio M

N = Z
F , sum-

DoF K(F−Z)
S , and subpacketization F .

It was also shown in [10, Corollary 1] that, the maximum
sum-DoF achieved by the schemes under MAPDA is L+KM

N .
Note that, for any (L,K,F, Z, S) MAPDA satisfying the

conditions in Definition 1, if we replace the non-star entries
in the array by null entries, the resulting array is called a
(K,F,Z) star placement array, which represents the place-
ment phase of the coded caching scheme obtained from the
MAPDA.

III. MAIN RESULTS AND NUMERICAL EVALUATIONS

In this section, for a given star placement array, we first
derive a lower bound on the number of integers in any
MAPDA under this star placement array. Then two MAPDAs
under a cyclic star placement, which is defined in the following
Definition 2, are constructed for the case where L < KM/N .
Compared to the proposed lower bound, the sum-DoF achieved
by our proposed MAPDAs is at least half of that of the optimal
MAPDA under the cyclic star placement when M/N ≤ 1/2.

Definition 2. (Cyclic star placement) A (K,F,Z) star place-
ment array P′ = (p′f,k)f∈[F ],k∈[K] including stars and null
entries, is referred to as a cyclic star placement array, if F is
divisible by K, t := KZ

F is an integer, and the stars in each
row are placed in a cyclic wrap-around topology, i.e., each
entry

p′f,k = ∗, only if k ∈ {< f + z >K | z ∈ [0 : t− 1]}. (2)

For instance, we can check that the following array

P′ =


∗ ∗
∗ ∗
∗ ∗

∗ ∗


is a (4, 4, 2) star placement array.

A. Upper bounds on the sum-DoF

Given an MAPDA or a star placement array P =
(pf,k)f∈[F ],k∈[K], we denote the set of the indices of rows,
each of which contains a non-star entry in the k-th column,
by

Ak = {f ∈ [F ] | pf,k 6= ∗}, ∀k ∈ [K]. (3)

From the above notation, the following statement holds.

Theorem 2. Let I be the permutation set of [K]. Given
an (L,K,F, Z) star placement array, the sum-DoF of any
(L,K,F, Z, S) MAPDA under this star placement array
should be no larger than

K(F − Z)⌈
1
L ·max

{
K∑
i=1

∣∣∣⋂ih=1Akh
∣∣∣∣∣∣∣ (k1, k2, . . . , kK) ∈ I

}⌉ .
Proof. Focus on any (L,K,F, Z, S) MAPDA under the given
star placement array with A1, A2, . . ., AK defined in (3). For
any g distinct column indices, k1, k2, . . . , kg , the following
statements can be obtained according to the values of g and
L.



• When g ≤ L, from Condition C3 of Definition
1, all the non-star entries in the column labeled by
k1 are different. Then we have S ≥ |Ak1 | ≥
1
L (|Ak1 |+ |Ak1

⋂
Ak2 |+ · · ·+ |

⋂g
i=1Aki |) .

• When g > L, for any L + 1 row indices, f1 ∈ Ak1 ,
f2 ∈ Ak1 ∩ Ak2 , . . ., fL+1 ∈

⋂L+1
i=1 Aki , by the

definition in (3), each of pf1,k1 , pf2,k2 , . . ., pfL+1,kL+1
is

an integer. Furthermore, by Condition C4 of Definition
1 (i.e., for any integer s ∈ [S], the number of non-
star entries in each row of P(s) which is composed
of the rows and columns containing s, is less than
or equal to L), pf1,k1 , pf2,k2 , . . . , pfL+1,kL+1

cannot be
the same.1 In other words, in the positions (fi, ki) of
the MAPDA where fi ∈

⋂i
h=1Akh and i ∈ [g],

each integer appears at most L times. As a result, the
number of distinct integers in the MAPDA is S ≥
d 1L
(
|Ak1 |+ |Ak1

⋂
Ak2 |+ · · ·+ |

⋂K
i=1Aki |

)
e.

Since the sum-DoF is K(F−Z)/S, the proof is complete.

For any cyclic star placement, the following result can be
directly obtained from Theorem 2.

Corollary 1. Given a (K,F,Z) cyclic star placement array
where F is divisible by K and t := KZ/F , the sum-DoF of
any (L,K,F, Z, S) MAPDA under this star placement array
should be no larger than K(F−Z)

dF (K−t)(K−t+1)
2LK e

.

Proof. For any (L,K,F, Z, S) MAPDA under a given
(L,K,F, Z) cyclic star placement array, from (2) for each
integer k ∈ [K], we have the set of row indices which contains
a non-star entry in the k-th column Ak = {< k + z >K

+gK
∣∣∣ z ∈ [K − KZ

F + 1,K
]
, g ∈

[
0, FK − 1

]
} as defined

in (3). Then from Theorem 2, we have

S ≥

⌈
1

L
·max

{
K∑
i=1

∣∣∣ i⋂
h=1

Akh
∣∣∣∣∣∣∣∣ (k1, . . . , kK) ∈ I

}⌉

≥

⌈
1

L
·

(
|A1|+ |A1

⋂
A2|+ . . .+

∣∣∣ K⋂
k=1

Ak
∣∣∣)⌉

=

⌈
1

L
· F
K
· ((K − t) + (K − t− 1) + · · ·+ 1)

⌉
=

⌈
F (K − t+ 1)(K − t)

2LK

⌉
.

Then the proof is completed.

B. Achievable scheme for L < KM
N

For the case where L ≥ t := KM
N , the authors in [6]

proposed an MAPDA with the subpacketization (L + t)K
and sum-DoF L + t, which is the maximum sum-DoF under

1Otherwise, assume that pf1,k1
= pf2,k2

= · · · = pfL+1,kL+1
= s.

Then pfL+1,k1
, pfL+1,k2

, . . ., pfL+1,kL+1
are all integers in P(s), since

fL+1 ∈
L+1⋂
i=1

Aki
⊆

L⋂
i=1

Aki
⊆ · · · ⊆

2⋂
i=1

Aki
⊆ Ak1

.

This contradicts Condition C4.

the MAPDA construction. Furthermore when L+ t = K, the
authors in [12], [13] proposed an MAPDA with supacketiza-
tion K and the sum-DoF L+ t. In this paper, we design two
MAPDAs with linear subpacketization (but with a sum-DoF
lower than the maximum one) for the case where L < t and
t+ L < K.

First, by extending the MAPDA in [6] to the case L < t,
we obtain the following MAPDA which achieves the sum-DoF
2L with subpacketization 2LK.

Theorem 3. For any positive integers K and t where t ∈ [L+
1 : K−L−1], there exists a 2L-(L,K, 2LK, 2Lt,K(K− t))
MAPDA with the sum-DoF 2L and subpacketization 2LK.

Proof. We first focus on a cyclic star placement array P′ =
(p′f,k)f,k∈[K] with dimension K×K. Each entry p′f,k = ∗ only
if k ∈ {< f + z >K |z ∈ [0 : t − 1]}; thus row f contains
Z neighbouring stars, which are in columns < f + 0 >K , <
f + 1 >K , . . . , < f + t− 1 >K .

Next, we fill each null entry of P′ by 2L different integers,
through K rounds. Each round r ∈ [K] contains K − t sub-
rounds. For each sub-round j ∈ [K − t], we define two 2L-
vectors as

frj =< [< L+ j − [L] >K−t +[L], eL] + r − 1 >K , (4)

krj =< [[L], < [L] + j − 1 >K−t +t] + r − 1 >K , (5)

where eL represents all 1 vectors with dimension 1× L. For
each ` ∈ [2L], denote the `th elements of frj and krj by frj (`)
and krj(`), respectively. Then we append integer 2L(K−t)(r−
1)+` into the entry in row frj (`) and column krj(`) of P′. Since
t > L, the elements in krj are different; thus an integer cannot
appear twice in one column, coinciding with the condition C3
in Definition 1.

Note that in each sub-round, we introduce one distinct
integer into 2L entries of P′, and that there are totally
K(K − t) sub-rounds. Hence, by the symmetry, there are
(K − t)2L integers in each column. Since there are t stars in
each column, by the above construction, each non-star entry
of P′ contains 2L integers.

Finally, we can generate a 2L-(L,K, 2LK, 2Lt,K(K− t))
MAPDA P with dimension 2L × K, from P′. More pre-
cisely, we can replicate P′ 2L times in the vertical direction, P′

...
P′

. Then in the `th replicate where ` ∈ [2L], we replace

each non-star entry (which is a vector of 2L integers) by the
`th integer of this vector.

Due to the limitation of pages, we omit the decodabilty
proof, which is similar to the one in [6].2

Second, for the case t ∈ [2L− 1 : K − 1], we propose the
following scheme which can further reduce the subpacketiza-

2Note that, in the construction of the scheme in [6] which is for the case
L ≥ t, different from (4) and (5), the definitions of frj and kr

j are < [<
t+ j − [t] >K−t +[t], eL] + r − 1 >K and < [[t], < [L] + j − 1 >K−t

+t] + r − 1 >K , respectively.



tion of the MAPDA in Theorem 3, where in Section IV we
will present an example to illustrate its construction.

Theorem 4. For any positive integers K and t where t ∈
[2L − 1 : K − L − 1], there exists a 2L-(L,K,αK,αt,
αK(K−t)

2L ) MAPDA with the sum-DoF 2L and subpacketization
αK where

α =

 2L if 2 6 |(K − t)
L if 2|(K − t), L 6 |K
1 if 2|(K − t), L|K

. (6)

C. Performance analysis

By Theorem 3, we have a 2L-(L,K,αK,αt, STh) MAPDA
where STh = αK(K−t)

2L and α = 2L. By Theorem 4 we have
an MAPDA under the cyclic star placement with the same
STh. In the following theorem, we show an order optimality
result of the proposed MAPDAS in Theorems 3 and 4.

Theorem 5. Given a (K,F,Z) cyclic star placement array
where Z

F ≤ 1
2 , the sum-DoF achieved by the proposed

MAPDAs in Theorems 3 and 4 is order optimal within 2 under
MAPDA construction for the case M/N ≤ 1/2.

Proof. By Corollary 1 if F = αK and Z = αt we have the
lower bound S ≥ dα(K−t)(K−t+1)

2L e for any MAPDA under
the cyclic star placement. Then if Z

F ≤
1
2 (i.e., t ≤ K

2 ), we
have

STh

dα(K−t)(K−t+1)
2L e

≤ αK(K − t)/(2L)
α(K − t)(K − t+ 1)/(2L)

< 2.

Recall that the sum-DoF is equal to αK(K − Z)/S. Hence,
given a cyclic star placement with F = αK, t ≤ K

2 (i.e.,
M/N ≤ 1/2), and L < t = KM

N , the sum-DoF of our schemes
(i.e., 2L) is at least half of the best sum-DoF under this cyclic
star placement.

Finally we compare the proposed schemes in Theorems 3
and 4 with the existing schemes in [4], [12]. In Fig. 1,
we consider the case where K = 15 and L = 2. When
M/N = 0.2, we can see that the schemes in [4], [12] have
the maximum sum-DoF 5 with subpacketizations 5005 and
910, respectively. In this case, our scheme in Theorem 3
achieves the sum-DoF 4 with the subpacketization 60, while
our scheme in Theorem 4 achieves the sum-DoF 4 with the
subpacketization 30.

IV. AN EXAMPLE FOR THE MAPDA IN THEOREM 4

For any positive integers K and t where K > t > 2, we
construct a 2L-(L,K,αK,αt, αK(K−t)

2L ) MAPDA P under
the cyclic star placement by the following two steps. First we
construct a K ×K base square cyclic star placement array B
and obtain a star placement array C by vertically replicating
B α times. Then we fill integers into the null entries of C to
obtain the MAPDA P. Due to the limitation of pages, we will
take the case where K = 7, t = 3 and L = 2 as an example
to illustrate our construction.
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Fig. 1: Cache-aided MISO broadcast problem with K = 15, L = 2.

A. Construction of the star placement arrays B and C

From (2) we can get a 7×7 base square cyclic star placement
array B = (bf,k)f,k∈[7] as follows,

B =



∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗


. (7)

Recall that the position (f, k) of an entry in an array, represents
that this entry is located at row f and column k of this array.
The positions of all null entries in B are divided into the
following disjoint orbits

B1 : = {(< k + 2 >7, < k + 1 >7) | k ∈ [7]}
= {(3, 2), (4, 3), (5, 4), (6, 5), (7, 6), (1, 7), (2, 1)},

B′1 : = {(< k >7, < k + 3 >7) | k ∈ [7]}
= {(1, 4), (2, 5), (3, 6), (4, 7), (5, 1), (6, 2), (7, 3)},

B2 : = {(< k + 3 >7, < k + 1 >7) | k ∈ [7]},
= {(4, 2), (5, 3), (6, 4), (7, 5), (1, 6), (2, 7), (3, 1)},

B′2 : = {(< k >7, < k + 4 >7) | k ∈ [7]}
= {(1, 5), (2, 6), (3, 7), (4, 1), (5, 2), (6, 3), (7, 4)}.



In our following integer-filling strategy, we will put each
integer into a pair of orbits, B1 and B′1, such that each integer
appears exactly 4 times; and put each integer into a pair of
orbits, B2 and B′2, such that each integer appears exactly 4
times too. Recall that each orbit has exactly K = 7 positions.
Since to achieve the sum-DoF 2L = 4, each integer needs to
appear in the positions of B1 and B′1 exactly 4 times; thus
we need to have 4|2 × 7, which is impossible. So we need
to replicate the base square B twice which coincides with α
in (6). Thus we can get the star placement array C of the
objective MAPDA P by vertically replicating B α = 2 times.

Clearly the positions of all the null entries in C can be
represented by the orbits B1, B′1, B2 and B′2 as follows,

C1 ={(< k + 2 >14, < k + 1 >7) | k ∈ [14]}
={(3, 2), (4, 3), (5, 4), (6, 5), (7, 6), (8, 7), (9, 1), (10, 2),
(11, 3), (12, 4), (13, 5), (14, 6), (1, 7), (2, 1)}, (8)

C′1 ={(< k >14, < k + 3 >7) | k ∈ [14]}
={(1, 4), (2, 5), (3, 6), (4, 7), (5, 1), (6, 2), (7, 3), (8, 4),
(9, 5), (10, 6), (11, 7), (12, 1), (13, 2), (14, 3)}, (9)

C2 ={(< k + 3 >14, < k + 1 >7) | k ∈ [14]}
={(4, 2), (5, 3), (6, 4), (7, 5), (8, 6), (9, 7), (10, 1), (11, 2),
(12, 3), (13, 4), (14, 5), (1, 6), (2, 7), (3, 1)}, (10)

C′2 ={(< k >14, < k + 4 >7) | k ∈ [14]}
={(1, 5), (2, 6), (3, 7), (4, 1), (5, 2), (6, 3), (7, 4), (8, 5),
(9, 6), (10, 7), (11, 1), (12, 2), (13, 3), (14, 4)}. (11)

B. Construction of the MAPDA P

In the following, we will use an integer set to fill the null
entries in C1, C′1, and use another integer set to fill the null
entries in C2, C′2, such that we can construct P from C.

Integer-filling: For each j ∈ [2] and for each k ∈ [αK] =
[14], we put integer bk2 c+7×(j−1)+1 into the positions
(< j + k + 1 >14, < k + 1 >7)) of Cj and (< k >14,
< j + k + 2 >7) of C′j , respectively.

Note that for each integer k ∈ [14], the pairs (j, k) and
(j, k + 1) lead to the same integer bk2 c + 7 × (f − 1) + 1.
Hence, each integer appears 2L times in P.

For instance when k = 1 we put the integer bk2 c + 7 ×
0 + 1 = b 12c + 1 = 1 into the positions (< 1 + 1 + 1 >14,
< 1+1 >7) = (3, 2) of C1 in (8) and (< 1 >14, < 1+1+2 >7

) = (1, 4) of C′1 in (9), respectively. When j = 2 and k = 11,
we put integer b 112 c + 7 × 1 + 1 = 13 into the positions
(< 2 + 11 + 1 >14, < 11 + 1 >7) = (14, 5) of C2 in (10)
and (< 11 >14, < 2 + 11 + 2 >7) = (11, 1) of C′2 in (11),
respectively.

Finally we can obtain the following 4-(2, 7, 14, 6, 14)

MAPDA,

P =



∗ ∗ ∗ 1 8 13 7
7 ∗ ∗ ∗ 1 8 14
14 1 ∗ ∗ ∗ 2 9
9 8 1 ∗ ∗ ∗ 2
3 10 8 2 ∗ ∗ ∗
∗ 3 10 9 2 ∗ ∗
∗ ∗ 4 11 9 3 ∗
∗ ∗ ∗ 4 11 10 3
4 ∗ ∗ ∗ 5 12 10
11 4 ∗ ∗ ∗ 5 12
13 11 5 ∗ ∗ ∗ 6
6 13 12 5 ∗ ∗ ∗
∗ 7 14 12 6 ∗ ∗
∗ ∗ 7 14 13 6 ∗



,

which leads to a coded caching scheme for the (2, 7,M,N)
cache-aided MISO broadcast problem with memory ratio M

N =
3
7 , sum-DoF 4, and subpacketization 14, while the schemes in
[2], [4], [12] achieve the sum-DoF 5 with subpacketizations
630, 105 and 175, respectively.
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